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A two-dimensional Boussinesq equation, 

is introduced to describe the propagation of gravity waves on the surface of water, in 
particular the head-on collision of oblique waves. This equation combines the two-way 
propagation of the classical Boussinesq equation with the (weak) dependence on a 
second spatial variable, as occurs in the two-dimensional Korteweg-de Vries (2D 
KdV) (or KPII) equation. Exact and general solitary-wave, two-soliton and resonant 
solutions are obtained from the Hirota bilinear form of the equation. The existence of 
a distributed-soliton solution is investigated, but it is shown that this is nof’.a 
possibility. However the connection with the classical 2D KdV equation (which does 
possess such a solution) is explored via a suitable parametric representation of the 
dispersion relation. 

A three-soliton solution is also constructed, but this exists only if an auxiliary 
constraint among the six parameters is satisfied ; thus the two-dimensional Boussinesq 
equation is not one of the class of completely integrable equations, confirming the 
analysis of Hietarinta (1987). This constraint is automatically satisfied for the classical 
Boussinesq equation (which is completely integrable). Graphical reproductions of 
some of the solutions of the two-dimensional Boussinesq equations are also presented. 

Utt - u,, + 3(u2),, - ~x,,, - uyy = 0, 

1. Introduction 
Completely integrable equations, that is, evolution equations of soliton type, have 

been with us now for almost thirty years. They appear, and are important and relevant, 
in many different branches of applied mathematics and physics; not least, many 
examples and variants are generated by problems in the study of water waves, which 
is the vehicle we use here. Indeed, the archetypal equation - the KortewegAe 
Vries (KdV) equation - first saw the light of day in work on long gravity waves moving 
over stationary water (Korteweg & de Vries 1895); this equation, written in the familiar 
normalized version, is 

Once the general method of solution of this equation was obtained (in the seminal 
work of Gardner et al. 1967), many other equations and mathematical approaches 
rapidly followed. In the particular field of water waves, two families of nonlinear 
evolution equations emerge: one is the KdV family of equations, and the other is based 
on the nonlinear Schrodinger (NLS) equation, 

iu, + u,, + u (uI2 = 0. 
Here we shall be concerned only with the KdV family and, specifically, with a new 

u~-~uu,+u,~.=~, t > 0 ,  - ~ < < < < .  (1) 
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member of this family which would appear to be of some relevance in water-wave 
theory (as well as being an equation which can be written down following simple rules, 
and which may be worthy of study in its own right). 

Under appropriate assumptions that describe the requirements for small amplitude 
and long waves (which we shall define more carefully later), one-dimensional surface 
gravity waves satisfy the KdV equation, (I), to leading order in a suitable region of 
physical space. This KdV equation is relevant to waves that propagate only in one 
direction. If the waves propagate mainly in one direction, but oblique interactions or 
slightly bent wave fronts are allowed, the governing equation (under suitable 
assumptions) turns out to be of the form 

the Kadomtsev-Petviashvili (KP), or 2D KdV, equation; Kadomtsev & Petviashvili 
(1 970). The KP equations - there are two of them, depending on the sign of the term 
in uuy (ours is KPII) - have excited much interest because they are the archetype of 
completely integrable equations in 2 +  1 dimensions; see Ablowitz & Clarkson (1991) 
for an excellent introduction to much of this work. It is also possible to have concentric 
(or nearly concentric) waves of this type; thus, for example, we can obtain 

(Ut - 6uu, + ~,,,), + uyy = 0, (2) 

1 
t 

2ut +- U - ~ U U ,  + u,,, = 0 (3) 

for concentric or cylindrical waves. (This, and other equations in the KdV family for 
water waves, are discussed in Johnson 1980.) All these examples relate to waves that 
are moving, predominantly, in one direction - to the left or right, or outwards or 
inwards. However, another equation, similar in character to the KdV equation, 
describes waves that are moving in one dimension but which may propagate in opposite 
directions. This equation, usually written in the form 

(4) 
admits solutions in which the waves may collide head-on; all the other equations 
mentioned earlier permit only overtaking collisions; equation (4) is called the 
Boussinesq equation (Hirota 1973). Thus we refer to equations (1)-(4), and some 
others not written down here, as belonging to the KdV family, and one aim of this 
work is to extend this family (albeit in a rather obvious way). 

Equation (2) is the two-dimensional extension of the classical KdV equation (l), 
where the dependence on the second dimension (through y )  is suitably weak; we shall 
describe this requirement below. The question we pose here is whether a similar 
argument can be used for the Boussinesq equation, and hence produce a two- 
dimensional version of that equation relevant to water waves. Such an equation, 
presumably, will then admit solutions that represent, for example, head-on collisions 
between oblique waves. We shall briefly describe the derivation of this new equation, 
which we shall call the two-dimensional Boussinesq equation, and which takes 
- perhaps not surprisingly - the form 

This equation, (5 ) ,  would seem to be the archetype for waves that propagate in opposite 
directions in 2 + 1 dimensions. 

In the context of evolution equations, an important question is whether a given 
equation is one of the completely integrable class; equations (1)-(4) belong to this class. 
Now Hietarinta (1987) has generated, via the bilinear form, those equations which 
belong to the KdV family and which also are completely integrable. (In later papers he 

U t t  - u,, + 3(u2),, - u,,,, = 0, 

Ut t  - u,, + 3(u2),, - u,,,, - u g g  = 0. ( 5 )  
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considered equations that belong to other families.) Our two-dimensional Boussinesq 
equation is not on Hietarinta's list, and so we must expect that it will not be completely 
integrable. Certainly, if our equation can be expressed in bilinear form, then Hietarinta 
(1987) has shown that it must possess at least a general two-soliton solution. The new 
equation, as we shall demonstrate, can be written in bilinear form. The crucial test, as 
Hietarinta explains, is whether a general three-soliton solution exists (for this is related 
to the Painleve'property, which is discussed, for example, in Ablowitz & Clarkson 199 1). 
We shall derive the two-soliton solution of the two-dimensional Boussinesq equation, 
and also show that a general three-soliton solution does not exist, confirming the 
predictions of Hietarinta (1987). This might be regarded as the end of the story, and 
it would be if we are driven by the need to study only completely integrable equations 
(and then we would find that much of the work is routine). Our new equation is 
relevant to water waves and so, we submit, is worthy of study ~ but now we cannot call 
on the full panoply of soliton theory. 

Thus, because of the r61e of this equation in water-wave theory, we shall examine 
some solutions and properties that are peculiar to it in this respect. We shall, for 
example, describe the special two-soliton solutions which are resonant-wave 
interactions (Miles 1977; Freeman 1980). Also we show how the two-dimensional 
Boussinesq (very simply) goes over to the classical Boussinesq equation (which is 
completely integrable) and, more significantly, we investigate the existence of 
distributed soliton solutions and relate this to the corresponding solutions of the 2D 
KdV (KPII) equation ; see Freeman (1979). Extensive numerical solutions, relevant to 
water waves, are left for a later study. 

2. Governing equations 
We consider wave propagation on the surface of water (taken to be an inviscid fluid) 

of constant depth, which is stationary in its undisturbed state; the surface-tension 
effects are ignored. The governing equations are therefore Euler's equation - this is 
regarded as marginally preferable to Laplace's equation - together with the ap- 
propriate surface and bottom boundary conditions. The problem is non-dimension- 
alized using the undisturbed depth of water h, a typical wavelength of the wave A, and 
a typical amplitude of the wave a ;  see figure 1. The non-dimensional equations are then 
written in terms of two parameters: e = a/h ,  the amplitude parameter, and S = h /h ,  the 
shallowness parameter. It turns out to be slightly more convenient to redefine the 
problem by scaling out the parameter 6 (which equivalently replaces S2 by e), which we 
may always do. Thus we transform, for example, 

and correspondingly for t ,  y and w; the resulting (non-dimensional) equations are then 

I ut + €(!Lux + vuy + wu,) = -pz ,  
U t  + E(UU, + vvy + wu,) = -py,  
.{Wt + €(UW, + UWy + ww,)} = -pz, 

with u,+uy+w, = 0, (7) 

p = y, w = y t+e(uvs+vyy)  on z = 1 + q ;  (8) 
w = O  on z=O. (9) 

and the boundary conditions are 
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FIGURE 1. Defining sketch for the variables and scales used in the water-wave problem. 

Here, the surface has been written as z = 1 + eq(x,y, t ;  E )  andp is measured relative to 
the hydrostatic pressure in the undisturbed state. 

If we choose to consider strictly one-dimensional waves (so Y = 0, i3/3y = 0), and we 
introduce the far-field variables 

[ =  x-t, 7 = st, 

an asymptotic solution in integer powers of E ,  as e.0, yields the KdV equation 

2vOT + 3v0 q0t + ho5t5 = 0. (10) 

We have written 7 - ~ ~ ( 6 ,  T), as e+ 0, and the choice of the characteristic variable x- t 
(rather than x + t )  shows that we are following right-running waves. 

Now, if we seek a solution which also depends (weakly) on the y-coordinate, by 
introducing Y = el iZy = O(1) (and then we require Y = eliz V ) ,  we find that 
7 - qo(fl, r,  Y )  satisfies the 2D KdV (KPII) equation 

(1 1) (2v07 + 3v0 vos +ivos5& + royy  = 0. 

Finally, if we allow waves to propagate in either direction (so we must work with the 
original x and t),  and include the weak dependence on y (as above), then we obtain 

where V, = - T~ + O(e). This equation is more usually written in terms of 

H = T - E ~ ' ,  X =  x-e I rqdx ,  

this latter transformation being equivalent to writing the equation in a Lagrangian 
rather than an Eulerian frame. When we eliminate V and ignore terms O(ez) and 
smaller, we are left with essentially the equation that we seek: 

This is written in the more conventional form by transforming H + - 2 H / e ,  
( X ,  t )  --f (e/3)'I2 ( X ,  t),  Y-t  eY2/3,  to give 

Htt - H x x  + 3 ( H 2 ) x x  - H x x x x  - HYY = 0. (14) 
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This is the new two-dimensional Boussinesq equation, from which we recover the 
classical Boussinesq equation when the dependence on Y is ignored. Equation (14) 
can be written in bilinear form (see § 3 ) ,  but, as we have mentioned, it does not appear 
in Hietarinta's (1987) list of completely integrable equations; this has profound 
consequences for the range of solutions available. 

3. Hirota's bilinear form 

possess soliton solutions that are most conveniently represented by setting 
The KdV equation, (l), 2D KdV equation, (2), and the Boussinesq equation, (4), all 

a 2  

ax2 
u = -2-logf 

and solving forf. The resulting equation for f is, following Hirota (1971), written in 
terms of the bilinear differential operator, which is defined as 

D r  D,"(a. b) = (% a a  - gr (& - &r a(x, t) b(x', t') 1 
2'-2 
t,-t 

for non-negative integers m and n. Thus, for example, the KdV equation, (l), upon 
using (15) and (16), becomes (after one integration in x) the bilinear form 

D,(Dt + D:) (f-f) = 0. 

Similarly, the 2DKdV gives the bilinear form 

(D,D,+D;+Di)Cf.f) = 0 (174 

or A f Z ,  +f,,,, +f,& + (3f L - 4fZfZZZ -f,A - f  = 0 (17b) 

(for which we need to include a corresponding dependence on y in (16)), and finally the 
Boussinesq equation gives 

(D," - D3 - D:) (f-f) = 0. 

Our two-dimensional Boussinesq equation, (14), comprises elements from both the 
classical Boussinesq equation and the 2D KdV equation; thus we seek solutions which 
take the form 

(18) 
a 2  

ax2 
H = -2-10gf. 

With the introduction of the bilinear differential operator, the equation for f becomes 
simply 

where we have assumed that f x , f , ,  f y ,  . . . + 0 as X - t  + co or - co. This equation, when 
written explicitly, is 

(20) 

The solutions of these various bilinear equations, which generate soliton solutions 

(D,"-Dh-D$-Df)(f*f) = 0, (19) 

mtt - fxx  - fxxxx  - f Y Y )  - (f," - f  z -4fxfxxx + 3f %x - f  3 = 0. 

via the transformation (15), are obtained by writing 

(21) I f = l +  esl (solitary wave) ; 

f =  1 +  esl+ esz+A 12 ee1+'Z (two-soliton), 
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and so on. The phase function, Oi, is linear in the independent variables; so for the 2D 
KdV equation, (17), we find that 

Oi = k , ~ + 2 / 3 1 , y - ~ , t + c ~ i ;  mi = kg+31:/ki, (22) 

where k,, 1, and a, are arbitrary real constraints. (The 4 3  here is merely a convenience.) 
For the two-soliton solution, it can be shown that 

( P ,  -P,> (41 -42) 
( P ,  + 42) (41 +PZ) ’ A12 = 

where we have introduced parameters pi, 4, (i = 1,2) (Freeman 1980) such that 

ki = pi + q,, 1, = p: - 4: (and then wi = 4(pg + 4;)). 

A special solution of the 2D KdV equation exists when A, ,  = 0 (but not with both 
p ,  = p ,  and q1 = q,, which would recover the solitary-wave solution). Considerp, = p,, 
and 4, =!= q2;  then A, ,  = 0 and solution (21) becomes 

(23) f =  1 +  esl + esz. 
This solution represents an interaction with three ‘arms’ (each locally solitary waves) 
at infinity; the solution with A,,  + 0 possesses four arms describing two waves crossing 
obliquely. From (23), the three arms are given, at infinity, by 

1 + esl, 1 + e’z, 1 + esl-oz, 

and this third one satisfies the dispersion relation in (21), with k, = k ,  - k,, I ,  = 1, - I ,  
and w, = w ,  - w,  : solution (23) corresponding to the resonant interaction of three 
waves - a resonant triad: see Miles (1977), Freeman (1980). It is readily seen that the 
resonant solution, (23), satisfies equation (17b) by satisfying the two sets of terms in 
brackets separately. This special reduction was exploited by Gibbon, Freeman & 
Johnson (1978) to obtain solutions of evolution equations which are not completely 
integrable; what we describe below owes something to this approach. 

4. Solutions of the two-dimensional Boussinesq equation 
The most natural solution to start our investigation takes the form 

f = 1 +es, 0 = kX+lY-wt+a;  (24) 

direct substitution into equation (1 9), and using standard properties of the bilinear 
operator (see e.g. Matsuno, 1984), or directly from (20), yields 

w2-,y-k4-p = 0. (2 5 )  

The solution (24), with the dispersion relation (25), generates the most general solitary- 
wave solution of the two-dimensional Boussinesq equation (via the transformation 
(18)) .  It is clear that the dispersion relation admits solutions for which w / k  > 0 or 
w/k  < 0, and so the waves may propagate in either direction. 

We now seek a solution, following the familiar structure of (21), in the form 

f =  1 +  esl + es2 + A, ,  es1+’z, (26) 

where 

and 

0, = k,X+liy-w, t+ai ,  i =  l , 2 ,  

w, = ci(k: + kf + l:)’’’, e, = f 1.  
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FIGURE 2.  An example of a head-on oblique collision of two solitons; 
k l = l l = l ,  0,>0, k , = 1 ,  1 2 = - 1 ,  0,<0. 

It is then fairly straightforward to show that (26) is a solution of (19), for arbitrary 
values of k,, k,, 1, and I , ,  provided 

The two-soliton solution that is obtained via (1 8) exists for A,,  > 0 and, because there 
are no other restrictions on the parameter values, this constitutes the most general two- 
soliton solution. The structure of the N-soliton solution will be addressed in $6 .  For the 
two-soliton solution it is easy to see that we may rewrite the coefficient A12, in (27), as 

(w, + wJ2 - (k ,  + k J 4  - (k ,  + k J 2  - (I, + I,), 
( ~ ~ - ~ ~ ) ~ - ( k ~ - k ~ ) ~ - ( ( k ~ - k ~ ) ~ - ( l , - 1 ~ ) ~  A , ,  = - 

which exactly mirrors the result given by Hirota (1973), for the classical Boussinesq 
equation; the corresponding coefficient for that equation is recovered when we set 
I ,  = 0 = I,, which merely removes the dependence on Y.  The structure of (28) might 
lead us to believe that the result of Hirota (1973) could be extended to produce the 
(general) N-soliton solution simply by the inclusion of appropriate terms (li f Zj),. 
However, this would be counter to the predictions of Hietarinta (1987). 

For the two-soliton solution in particular, w1 and w ,  may take opposite signs (for 
both k, > 0 and k,  > 0, let us say) and consequently the resulting soliton interaction 
will describe either a head-on or an overtaking oblique collision; an example of a head- 
on collision is shown in figure 2 (for the choice k ,  = I, = 1, w1 > 0 and k,  = 1, I ,  = - 1, 
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i0  

FIGURE 3. An example of a resonant interaction; 
k , = l ,  11=0, w l = 2 / 2 ,  k , = 2 ,  I,=2/30, 0 , = 5 2 / 2 .  

w ,  < 0). The two-dimensional Boussinesq equation therefore provides an opportunity 
to model head-on oblique collisions, as we anticipated. 

The family of solutions of our new equation also includes resonant interactions 
obtained, in the two-soliton case, by setting A , ,  = 0. Thus, from equation (27), we 
require that 

and when this is satisfied the wave which is described (at infinity) by 
f = 1 +  eVff, 

satisfies the original dispersion relation with k ,  = k ,  - k,, 1, = I, - I, and w,  = w1 - 0,. 
That this is so is immediately obvious from the alternative version of A, ,  given in (28). 
Thus the solution represented by 

f = l+eel+esz 

is indeed a resonant interaction (a resonant triad); an example of this is given in figure 
3 (for k ,  = 1, I ,  = 0, k ,  = 2, I, = d30) .  Corresponding solutions which follow this 
pattern, namely 

f = 1 + C eoi, 

can also be obtained (see Gibbon et al. 1978), but other solutions based on just the two- 
soliton structure may also be possible. For example, Freeman (1979) describes how the 
condition for a resonant solution, coupled with integration over a parameter, leads to 

N 

i=l 
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a distributed soliton of the 2 D  KdV equation. We now explore what happens when this 
idea is applied to our two-dimensional Boussinesq equation; we shall see that the 
results are less satisfactory, although this presents us with an interesting question. 

5. Parameterization and the existence of solutions 
First we require a suitable parametric representation of the dispersion relation, (25) ; 

a convenient one (and the simplest that this author can find) is 

for the two parameters ( p ,  q). The choice of signs is independent in each expression but, 
for the conventional choice of k > 0, we could elect to use the positive sign in k ,  
together withp > 1 .  The special case, q = 1 ,  recovers a parameterization of the classical 
Boussinesq equation. 

The condition for a resonant triad, (29),  written in terms of the parameters ( p l ,  ql) 
and ( p z ,  qz), becomes 

(P1-Pz)2(P;P;+P1P2+ 1 ) .  (31) (P;+1)(P;+1)(41-qz)2  = 4- 
41 q 2  
P1 P z  

This equation is clearly satisfied if q1 = q2 and p1 = p 2 ,  as we would expect. 
Furthermore, equation ( 3  1 )  describes the parameter space for which resonant two- 
soliton solutions exist. Thus, for example, if we solve for q1/q2  we find that 

and so resonant solutions certainly exist whenever both pi  have the same sign; indeed, 
we can generate any k,  > 0 or ki < 0 for a suitable value p i  > 1 (see (30)).  Hence 
resonant solutions exist for any pair of wavenumbers ( k l ,  k , )  ; the corresponding values 
of q l / q 2  are depicted in figure 4, for a range of values of p1 and p 2 .  (Note that the 
expression for y cannot be written solely as a function ofpl/pz, although it is symmetric 
in p 1  and p 2 ;  for p 1  = p 2 ,  the only solution is q1 = q2.) 

The distributed-soliton solution described by Freeman (1979), for the 2 D  KdV 
equation, might be expected to have its counterpart here. Such a solution takes the 
form 

f = 1 + r * g ( h )  exp { k X +  1 Y -  wt}  dh, 
4 

where k ,  1 and w satisfy the dispersion relation (25) and which also depend on a 
parameter A ;  g(h) is an arbitrary function. Expression (32) is substituted into equation 
(20),  whereupon the first term in brackets in that equation is immediately zero; the 
second term gives rise to the double integral 

x exp { ( k X +  IY-ot) + ( k X +  1’Y- w’t)} dh dh’, 

where the prime denotes evaluation on h = A’. This term is to be zero (for all X, Y and 
t )  if a solution is to exist, and this requires that 

ww’- k k  - 2 ( k k 3  + k k 3 )  + 3 k 2 k 2  - 11‘ 
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FIGURE 4. Existence of resonant two-soliton interactions; qJq2 against p l ,  for various p z  and 
showing both branches (k). 

must take a very special form. (Note that we have replaced 4 k k 3  by 2 k k 3  + 2k’k3, to 
retain symmetry, which we may always do.) In terms of ( p ,  q), (p’ ,  q’), this gives 

cf. equation ( 3 1 ) .  What we seek, for an exact solution of the equation, is that either ( 3 3 )  
is identically zero or that it takes the form h(A, A’) - h(A’, A ) ;  in either case the double 
integral is then zero. However, the only available choice that exactly satisfies this 
condition is 

p = p ‘  and q = q’, 

and consequently bothp and q are constant: the parameter h is absent and so the two- 
dimensional Boussinesq equation does not admit a distributed-soliton solution. In the 
light of Hietrinta (1987), this is not surprising since the existence of a distributed- 
soliton solution requires conditions stronger than for the existence of a two-soliton 
solution alone. However, the result does raise the question of how the two-dimensional 
Boussinesq equation (no distributed soliton) goes over to the 2 D  KdV equation (which 
does possess one). 

The (linear) dispersion relation for the two-dimensional Boussinesq equation is (see 

W2-k2-k4-p  = 0, (34) 

wk-k4-12  = 0, ( 3 5 )  

(25)) 

and for the 2D KdV equation it is 

see equations (2) ,  (17a) ,  (22). The connection is made when the two-dimensional 
Boussinesq problem is interpreted for w - & k and the waves are long, e.g. 

k = AK, 1 = A2L, w = k +  A3Q, 

then, for A --f 0, (34) gives 
2QK- K 4  - L2 = 0. 
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to leading order, which is essentially (35). This approximation is recovered from our 
parametric representation, (30),  when we allow p - f  1 and q - f  1 ; we now make this 
choice, and examine the effect upon the expression (33). 

Let us set 
00 

p = l+Sh, - 1+  C PQ,, 6+0, (36)  
n=1 

and then construct the asymptotic representation of (33 )  as 8+ 0 (and we observe that, 
in general, this expression is O(s4)). The leading term in (33)  contains a factor 

and so we choose 

where a1 is fixed i.e. Ql, = .\/3(h’+a,). The next term, O(S5), can also be made zero if 
we elect to write 

where a2 is fixed. However, the term that arises at O(P) can neither be made zero, nor 
written in the form h(h, A’) -h(h’, A), for any choice of Q3. Thus, for the parameters 
given in (36),  a solution which approximates a distributed soliton can be found, where 
Hirota’s bilinear equation, (20), is satisfied with an error of O(66). The wavenumbers 
and frequency for this solution are then given by 

4(Q1-Q;)’- 12(h-h’)2 

Q ,  = 2/3@ + al). 

Q, = i ( 3  - 2/3) h2 + 3a1 h + a2, 

k - k(Sh-~S2h2),  I -  &82hQl, o - +{k+$33(h3+hQ3}, 

where the first few terms are retained. 

6. The non-existence of a general three-soliton solution 
We have demonstrated that a general solitary-wave solution and a general two- 

soliton solution exist, that a resonant triad of waves is also a solution, but that a 
distributed-soliton solution is not. The next stage in the development is to examine the 
character of the N-soliton solution. To this end, we first extend the calculation from the 
two-soliton to the three-soliton solution. 

Following the two-soliton solution, (26), we write 

where ( ) denotes that j  is taken cyclically with respect to i; the coefficient Aij  is defined 
according to the pattern of (28). Expression (37)  is substituted into equation (19) (or 
(20)); it follows that this f is a solution provided 

= 

the familiar result for soliton problems, and provided one further condition is satisfied. 
The existence of one extra condition (which ensures that the coefficient of the term 
e‘1+~~+~3 in (20) is zero) implies that the two-dimensional Boussinesq equation is not a 
soliton equation. The auxiliary condition requires that 

where (( )) denotes that ( i , j , k )  are taken cyclically. Equation (38)  provides a single 
relation among the six parameters (kl ,  l J ,  (k2, I,) and (k3, 13):  the expression (37) does 
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FIGURE 5. An example of a three-soliton interaction; 
k , = l l = l ,  0,<0,  k 2 = 1 ,  1 2 = - 2 ,  0 , > 0 ,  k , = 1 . 5 ,  1 3 ~ - l . 7 4 ,  0,>0.  

not lead to the most general form of three-soliton solution for our two-dimensional 
Boussinesq equation. This result is completely consistent with the analysis of 
Hietarinta (1987), although constraints like this - and others appear for higher N- 
soliton solutions - are encountered when special solutions are sought (see e.g. Gibbon 
et al. 1978). In this approach, the number of free parameters decreases as N increases 
until, beyond a certain N = No, no solutions of this type exist. (Although the details 
have not been checked - even with the aid of an algebraic package on a computer, the 
task is considerable - the pattern evident here, when compared with similar problems, 
would suggest that No = 6 ;  see $7.) Equation (38) is easily solved, for 1, say, in terms 
of (k l ,  11),  (k,, 1,) and k,. For example, if k ,  = 1, lI = 1, o1 < 0, k, = 1, 1, = -2, 
o2 > 0, with k,  = 1.5 and o3 > 0 then l3 z - 1.74; this three-soliton solution is shown 
in figure 5. Thus we have a five-parameter family of three-soliton solutions of the 
two-dimensional Boussinesq equation. 

7. Concluding comments 
We have summarized how the simplest problem in water waves, describing the 

propagation of gravity waves, gives rise to a two dimensional Boussinesq equation. 
This equation has been studied using the Hirota bilinear method and some solutions 
have been obtained. We have seen that, although this equation can be written in 
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TABLE 1. This grid represents how the various terms required for the N-soliton solution, as they appear in 
equation (20), are eliminated. Each entry describes the role of the terms obtained by multiplying the column 
by the row i.e. IIn x I I m .  The notation is as follows: IIn = product eiej ... to n terms (cf. equation (37)); 
0 = identically vanish; d = eliminated by virtue of the dispersion relation; Ai j ,  etc. = this coefficient in the 
solution (cf. (37)) is determined; Cl!, etc. = additional constraint. The heavy lines denote the set of terms 
used in the two-, three- and four- soliton solutions. (Note that the Cij would be 0 or d in this notation if the 
equation were completely integrable.) 

bilinear form, it does not possess the general three-soliton solution that is the hallmark 
of a completely integrable equation. The equation does admit general solitary-wave 
and two-soliton solutions (all these observations being consistent with the work of 
Hietarinta 1987) ; resonant triads of interacting waves are also solutions, although the 
associated distributed soliton is not. Nevertheless, we have demonstrated that a 
suitable choice of the parameters (namely p --f 1, q + 1) does produce a solution which 
approximates a distributed soliton, and the precise nature of this approximation has 
been described. 

In order to obtain more information about the solutions of this equation (which is 
no longer a routine exercise in the sense that conventional soliton theory is not directly 
applicable) we have constructed the three-soliton solution. We have demonstrated that 
such a solution exists only if an additional constraint is imposed, as anticipated by 
Hietarinta (1987). An analysis, although not exhaustive, of the problem for larger 
values of N suggests that, at N = 4, two further constraints appear; at N = 5,  another 
three, and so on; this pattern is represented in table 1. On this basis, a six-soliton 
solution exists (but with only two free parameters) and a seven-soliton solution does 
not. (In keeping with accepted practice, the phase-shift parameters, ai, are not included 
in the total of free parameters; although they are all arbitrary, they play an altogether 
insignificant r61e.) Finally, we observe that the constraint, equation (38), is 
automatically, satisfied if li = 0, i = 1,2,3 ; since this choice is equivalent to removing 
the dependence on Y, it confirms that the classical Boussinesq equation possesses a 
general three-soliton solution (and this same choice, for all li, produces the general N- 
soliton solution of the Boussinesq equation; see Hirota 1973). 

We have presented some solutions of the two-dimensional Boussinesq equation ; 
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other special soliton-like solutions may be of interest, even though this equation is not 
completely integrable. Certainly an area worthy of some exploration is how more 
general head-on collisions are described by the equation (perhaps using numerical 
techniques), and their relevance in the study of water waves. That is, for example, how 
accurately oblique - but nearly parallel, in this approximation - head-on collisions of 
long gravity waves are modelled by the two-dimensional Boussinesq equation. These 
are avenues for further study and investigation. 
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